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A p p r o x i m a t e  r ecur s ion  re la t ions  wh ich  give uppe r  a n d  lower b o u n d s  on  
the  free energy  are  descr ibed.  Op t i ma l  ca lcula t ions  o f  the  free energy  can  
t hen  be ob ta ined  by t rea t ing  pa r ame t e r s  wi th in  the  r eno rma l i za t ion  equa-  
t ions var ia t ional ly .  As  an  example ,  a par t icular ly  s imple  lower b o u n d  
a p p r o x i m a t i o n  which  preserves  the  s y m m e t r y  o f  the  H a m i l t o n i a n  ( the 
one -hype rcube  app rox i ma t i on )  is descr ibed.  T h e  a p p r o x i m a t i o n  is appl ied  
to b o t h  the  Is ing m o d e l  and  the  W i l s o n - F i s h e r  model .  A t  the  fixed poin t  a 
p a r a m e t e r  is set  var ia t iona l ly  and  critical indices  are  calculated.  For  the  
Is ing m ode l  the  ag r eemen t  with the  exact  resul ts  at d = 2 is surpr is ingly  
good,  0.1~o, and  is good  at d = 3 and  even d = 4. Fo r  the  W i l s o n - F i s h e r  
mode l  the  recurs ion  re la t ion  is reduced  to a one -d imens iona l  integral  equa -  
t ion  which  can  be solved numer ica l ly  giving v = 0.652 at  d = 3, or  by E 
expans i on  in a g r e e m e n t  wi th  the  resul ts  o f  W i l s o n  a n d  F i sher  to leading  
order  in ~. T he  m e t h o d  is also used  to calculate  t h e r m o d y n a m i c  func t ions  
for the  d = 2 Is ing mode l ;  excellent  ag r eemen t  with the  Onsage r  so lu t ion  is 
found .  
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values; thermodynamic functions. 
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1. M E T H O D O L O G Y  

1.1. Renormalization Transforms 

At the most elemental level, statistical mechanics is concerned with the 
calculation of a free energy F in terms of a sum over states or statistical 
configurations. This sum is defined by a Hamiltonian H, which depends upon 
some coordinates e. The sum over states can be written as an integral or sum 

over a "phase  space," f dPo. Then the fundamental formula of  statistical 

mechanics expresses the dependence of the free energy upon the Hamiltonian 
a s  

F~{H}  = - In f dP~ e -  m,) (1) 

The subscript a on the left-hand side of  Eq. (1) indicates that F is defined as a 
sum over the a-space. The remainder of  statistical mechanics is concerned 
with the definition and evaluation of statistical averages. Formally, this can 
be achieved by expressing H in the form 

H(a)  = H0(,0 + ;~V(a) (2a) 

the averages are given by derivatives of  the free energy, e.g., 

( V ) a  = OF~{Ha}/O,~ (210) 

( ( V  - ( V ) a ) 2 ) a  = - 02F~{Ha}/Oh 2 > 0 (2c) 

At the same level of  generality, one can consider the renormalization 
group to be a set of  transformations (1-5)'z from the old statistical variables a 
to new variables ~ and from the old Hamiltonians H(a)  to new Hamiltonians 
H'(t~). In general we write this transformation as 

H '  = R{H} (3) 

We demand that these transformations leave the free energy invariant, i.e., 
that 

Fu(R{H})  = Fo{H}  (4) 

where/7,  is defined as a sum over the new variables, i.e., 

Fu{H' } = - In f d r ,  e x p [ -  H'(jL)] (5) 

The transformations (3) are most conveniently defined by constructing a 
set of  functions of  both/~ and a of the form (a'6) 

H ( F ,  a) = H ( a )  -- ]V(/~, a) -- U~(a) (6a)  

2 Reviews  o f  the  r e n o r m a l i z a t i o n  m e t h o d  a re  given in Refs .  I -5 .  
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Here T is arbitrary, but U is defined by the relation 

i U~(e) = F , ( -  1") = - i n  dF,  exp[ir(t~, e)l (6b) 

In this paper, we use a caret to indicate functions (l ike/)  and 2?) which depend 
upon both e and t~. 

To see the fundamental renormalization property, consider the sum over 
both sets of variables 

F,~{H} = - I n  j" dF ,  dF~ exp[ - / ) (~ ,  ~)] 

= Fu{F~{/t)) = Fo{F,{_O}} (7) 

The second line of (7) is an identity which holds for all /~. It simply 
expresses the fact that the sum over t~ and ~ can be calculated in either order. 
Now, specialize to the case in which _O is defined by Eq. (6). Because of the 
definition of U~, 

F,{B} = H(~) (8) 

Hence, the right-hand side of (7) is the basic free energy. On the other hand, 
Eq. (7) also defines the free energy as F,{H'} with H '  defined as 

,7'(t,) = F,{/r + C~f - / ' }  

= - I n  f dro exp[H(o) + U~(~) - T(/,, c0] (9a) 

Equation (9a) defines H '  as a function of T and H. We define this dependence 
in a more compact notation by writing 

R~{H} = F~ + U~ - 5 ~} (9b) 

Equation (ga) or Eq. (9b) defines the renormalization operation that generates 
H' from H. Thus, Eq. (7) generates once more the fundamental invariance 
equation of the renormalization group 

Fo{H} = Fu{Rf{H}} (10) 

while Eqs. (6) and (7) define a whole class of renormalization transformations. 

1.2. Upper  and Lower  Bounds 

In practical applications, one seeks to calculate Fo{H} by constructing 
approximations to Rf{H}. After many successive transformations of this 
form, the Hamiltonian will either simplify to a tractable form or reach a 
"fixed point" which will have relatively simple qualitative properties. 
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However, in choosing approximations to R.~{H}, one would like to have 
criteria for deciding whether one approximation is better than another. We 
suggest "variat ional" criteria? That is, we suggest the construction of 
approximate renormalizations or recursions of the form H '  = RL{H} and 
H' = Rr:{H}. While the exact renormalizations leave the free energy un- 
changed, the approximate ones, R e and R z, do not. Rather, they are chosen 
to produce an error of known sign, i.e., they have the properties 

F,{RU{H}} >1 F~,(Rf{H} = F,(H} >>. Fu{RZ{H}} (11) 

Imagine, then, that we have constructed a whole set of upper (lower) 
bound renormalizations R v (RL), which obey (11). Notice that if we apply 
many successive upper (lower) bound renormalizations, we get a composite 
relation which obeys the upper (lower) bound property. After many such 
recursions we have an approximate result for the free energy which is an 
upper (lower) bound to the true free energy. 

However, at each step of recursion, we could have chosen any one of a 
large number of different approximate renormalizations by choosing different 
if"s or by varying the other parameters which define the upper (lower) bound 
relations. Hopefully, one might obtain good results for physical quantities by 
choosing the upper (lower) bound recursions that give the smallest error in 
the free energy. Thus, we propose the construction of a minimum upper bound 
to the free energy. 

We say "hopeful ly" because usually one is not interested in the free 
energy itself. Rather its derivatives are of the major physical interest. Since 
the variational principles pertain to the free energy, there is no guarantee that 
the derivatives will be accurate. 

To obtain actual expressions for the bounding renormalizations, return 
to Eq. (7), rewritten in the form 

F~{H} = F.~{/~} = F.{F~{/~r}} (12) 

In the exact calculation,/~ is given by Eq. (6). To generate approximations, 
we replace the exact/~ by/_~A and generate an approximate H '  as 

In f dr~ exp[ - ~A(/~, a)] (13a) H A(I L) F~{H a} 

Since/~A will depend upon H, we can say that Eq. (13a) defines an approxi- 
mate recursion relation 

H a = R'a{H} (13b) 

a For a preliminary report on variational principles and approximate renormalization 
group calculations see Ref. 7. 
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Then this approximate renormalization will be an upper (lower) bound 
relation if 

A F  = F , o { I t }  - F~,~{tTI A} (14) 

is less (greater) than or equal to zero. 
Standard methods immediately generate criteria for ~A'S that satisfy 

these conditions. Define an error, which is hoped to be small, by 

~(~, o) = fi~O~, ~) - ,qA(~, ~) (15a) 
and write 

/la = ~ a  + M2 (15b) 

The approximation is defined by/ ta=o;  the exact theory by Ha=l. In direct 
analogy with Eq. (2), we define 

<r = eg..{a~}lOa (16) 
E~, = <(12 - < 12>a)z>a = - (,:32/,922)F,,,~(/~,} ( 17 )  

Note that E~ > 0. The errors will be proportional to E~. 
It is easy to generate two identities for AF, namely 

A F =  <12>;,= o -- aA(1 - A)Ea (18a) 

= <l?>;,=a + dA AEa (18b) 

Our job is to fix the sign of AF. To get the two types of recursion, one chooses 

<IT>a=o = 0; for the upper bound (19a) 

(I~>A=I = 0; for the lower bound (19b) 

1.3. Realization of Upper Bounds 

The upper bound approximations are easily realized. Choose H A to be 
of the form 

~ A ( ~ ,  ~) = r ~) + Lrl(~) (20) 

Here r is a variational function which is simple enough so that one can 
calculate 

- In f dFo e-*O',") = Fo(~) (21) Ho(~) 

and averages of the form 

(22) 
d 
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Condition (19a) reduces to 

H l ( ~ )  = ( H ( ~ )  - ~@, ~) - U~(~ )  - ~(~, ~))~ ( 2 3 a )  

which can be expressed symbolically by 

HI = R o ~ ( H -  T -  U~ - ~) (23b) 

From Eq. (13a) 

/ t A ( ~ )  = ~ 0 ( ~ )  + / 4 ~ ( ~ )  

Hence the upper bound recursion is 

R~:{H} = r(~b) + R o ~ ( H -  ~ -  Uf - ~b) (24) 

Equation (23) expresses the extension of the standard variational principle of 
statistical mechanics (8~ to renormalization calculations. 

1.4. S y m m e t r y  Propert ies  

Renormalization calculations are enormously simplified when the 
symmetries of the problem are properly taken into account. Let the problem 
in the ~-space be symmetric under transformations gi, i = 1, 2,..., defined by 

~ ~' -- g,(~) (25a) 

while the problem in/~ is symmetric under Gj, j = 1, 2,..., defined by 

/~ -+/x' = Gj(/z) (25b) 

We say that Hamiltonians H(e) obey the symmetries if H(gi(o)) = H(e) and 
dFo~(~ ) = dF~ for all i. A symmetric H'(tQ is defined in a similar manner. 
A major goal in the construction of renormalization calculations is to ensure 
that H'(~) is properly symmetric whenever H(cr) is symmetric. 

As a specific example, the g and/z variables might each be arranged on a 
lattice, so that they could be represented as e(r) and I~(R). Then the sym- 
metries (25) would include lattice coordinate transformations of the form 

whenever 

and 

whenever 

~, = g , ( ~ )  

~'(r) = e(g~(r)) (26a) 

t~'(R) = /z(Gj(R)) (26b) 

Here, g~ and Gj describe all possible lattice translation and rotation operations. 
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Fig. 1. The basic lattice. �9 = c, and x =/,.  

�9 �9 �9 g 

x x 

�9 �9 �9 g 

The general method of ensuring the symmetry of H'(/X) given that of 
H(a) is to embed the/,-lattice within the a-lattice. One example of such a pair 
of lattices is shown in Fig. 1. In general, we shall want the/x variable to have 
fewer degrees of freedom than the a variables so that the symmetry operations 
Gj are a subset of the operations gj. In the case shown in Fig. 1, g, includes all 
translations with a displacement (n, m)ao and integral n and rn, while Gj 
requires n and m to be even integers. 

Now assume that H(a) and dF~ are symmetric under all g~ while dP~ is 
symmetric under all Gj. In the exact renormalization calculation, i.e., Eq. 
(8), the symmetry of H(~) will ensure the symmetry of H'(/X) whenever 

~(G,(/X), Gj(cr)) = T(/X, ~) (27) 

for all j. In the upper bound calculation, defined by Eq. (22), H'(/,) will be 
properly symmetric whenever ~,b(/x, a) obeys a relation like (26). 

The symmetry conditions play an even more essential role in the con- 
struction of lower bound renormalizations. For it is only with the aid of these 
conditions that we can ensure that the average of 12 vanishes, as in Eq. (18b). 
Since this equation describes an average in the presence of the exact H, this 
average cannot be calculated explicitly. But, if one makes 12 into a sum of 
terms, each odd under some symmetry operation, then Eq. (18b) will certainly 
be satisfied. With this end view, split 12 into two terms: 

~(/X, a) = ~A(/X, a) + Vo(a) (28) 

The subscripts indicate functions which are antisymmetric, with 12 A being a 
sum of terms antisymmetric in at least one subgroup operation 

~ @ ,  a) = ~ V,,0*, ~) 
J 

with 

VA,j(Gj@), G,(a))  = -- VA,;@, a) 

On the other hand, Va(r is symmetric under all these operations 

(29) 

V~(G~(a)) = V~(a) for all j (30a) 
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but is a sum of terms each antisymmetric under one of the remaining gi 
operations, i.e., 

V~(~) = ~ Va,,(~) (30b) 
i 

with 
vo,,(g,@) = - v~,,(~) (30c) 

One can see immediately that Eq. (19b) is satisfied by this form of 1 ~ if 
H(~r) is symmetric under all g, and if ~ obeys (27). To see this one need only 
write (19b) as 

o = f dr. dP~{exp[f(m ~) - v~(~) - g(~)]} ~ i2..@, ~) 
J 

+ f dr~ {exp[-H(~)l} ~ V~.,(~) (31) 

Every term in the sum over i or j vanishes because of one or another of the 
symmetry operations. 

Now that Eq. (19b) has been verified, one can rewrite (13a) as 

HL(tz) = --ln.( dP~ {exp[T(t~, a) - H(~) - Uf(cr)]} 

x exp[ + fa(/~, ~) -- V~(a)] (32a) 

Equation (32a) defines the Hamiltonian that is generated by the lower-bound 
renormalization calculation. In a somewhat more implicit notation, one can 
write a formula analogous to Eq. (8b), namely 

H e =  R ~ { H -  l ? a -  Ira} = F , { H -  12a- V= + U ~ -  T} (32b) 

In the absence of 12a, HL(t,) is certainly symmetric under all the opera- 
tions Gj. In the remainder of this paper, we shall not include any terms like 
Va. However, one should notice that since 12a can certainly include all kinds 
of antisymmetric terms depending only upon tL but not upon e, it is relatively 
easy to adjust /2A so that it generates a fully symmetric H L. 

1.5. Renormal i za t ions  and Recursion Relat ions Near  Fixed Points  

In general, one may write any symmetric H(cr) in the form 

H(~) = - ~ ,  K~S~(a) (33) 
i 

Here the K~ form a vector K of coupling constants, while the S~(a) are the 
complete set of functions of the a that obey all the symmetries. We denote an 
H of the form (33) as HK(~). After the renormalization, an H'(/0 is generated, 
which obeys the same symmetries and is hence expressible as HK,0Z), where 
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K' is a new set of couplings. For this reason, the renormalization may be 
visualized as a recursion relation which expresses K' as a function of K. This 
recursion relation is written 

K' = Rt(K) (34) 

Similarly, the approximate renormalizations may be expressed as 

K' = ,%A(K) (35) 

where p includes the parameters in T as well as any other variational param- 
eters. 

The free energy F~(H~,(a)} can be written as a product of the number of 
sites N and a free energy per sitef(K). I f  there are N '  sites after the renormal- 
ization, the basic inequality (10) may be conveniently expressed as 

f(Rp~(K)) >1 f(Rt(K)) = ( N / N ' ) f ( K )  >>-f(Rp~(K)) (36) 

The standard method of dealing with near-critical behavior starts from 
the calculation of an approximate fixed point K~*(p), which obeys 

Ka*(p)  = RpA(KA*(p)) (37) 

The next step is the calculation of the recursion relation near the fixed point 
by writing 

a I (38) b~ = ~ [RpA(K)], ~=~,*(") 

For later reference, we shall also need W~m, the derivative of the ith compo- 
nent of the recursion relation with respect to the ruth parameter at fixed K, 

= e I (39) W? =,m ~Pm [RpA(K)]i K*=Kr 

Both W A and b A depend upon p. 
Physical information about the critical indices is obtained from the eigen- 

values ofb~.(9) Define eigenvalues b ,  A and left and right eigenvectors v,~A, u]~ by 

~ v  A b A A A ,~ ~j = b~ v,~j, ~ ,  b~juj~,A ~ = uA=b A (39a) 

For variational calculations, the most important eigenvalue is the trivial 
one 

bo A = N [ N '  (39b) 

This trivial eigenvalue is generated by choosing So(e) to be just N. A change 
in the conjugate coupling constant Ko, i.e., AKo, leads to a change in Ko', 
which is given by 

(AKo')N' = (AKo)N 
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Hence bf0 is exactly (N/N')  8~,o. The corresponding right eigenstate is also 
trivial, 

u~0 = ~0 (39c) 

but the left eigenstate von~ must be calculated in detail. If this eigenstate is 
normalized by taking 

Vo~o = 1 (40)  

Then voA~ has a very direct calculational significance: When K~ = K~*(p) + h~ 
then, for very small h~, the leading term inf(K) is 

f(KA*(p) + h) = ~ v~h~ + higher order in h (41) 

Hence voA~ is proportional to the average value of S~ at the fixed point: 

v~,(p) = (1/N)< S,(cr)>n~A.,, , (42) 

Equation (42) is equally true for the approximate or the exact calculations 
of the free energy. 

These results provide a relatively simple variational technique for fixing p- 
According to the variational scheme, the "best"  value of p should have the 
property that the calculated free energy should be extremal with respect to 
variations of p at fixed K. We demand this condition at K*. According to 
Eq. (37), the change in K,' when we hold K* at KA*(p) but vary Pm by the 
amount Ap~ is W~,~ Apm. The condition that this change produce no first- 
order variation in the free energy is, according to Eq. (40, the statement 

~_, v'd,(p)W~(p) = 0 (43) 

There are as many equations (43) as there are variational parameters p,~. 
These equations are then used to determine p. Once p is determined, the critical 
indices are known. 

2. AN E X A M P L E :  THE  O N E - H Y P E R C U B E  A P P R O X I M A T I O N  

2.1. Der ivat ion 

There are many examples of usable upper bound renormalization 
approximations. All of the first-order perturbation expansions described by 
Neimeijer and van Leeuwen ~) as used by Hsu et al. (1~ are upper limit 
approximations. These approximations, and others we have employed, do 
not give very good answers either in the critical region or elsewhere. On the 
other hand, one can find a class of lower bound renormalizations which give 
surprisingly good answers. In this section, we describe in a very general way 
how one can develop the simplest class of lower bound approximations. 
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Start from a set of spin variables a(r) defined at the points of a simple 
hypercubical lattice in d dimensions, i.e., 

r = (nl + �89 n2 + �89 na + �89 na + �89 (44) 

for nl, n2,.., integral. In this definition a(r) may be any statistical variable, 
which takes on continuous or discrete values. In addition, it may have all 
kinds of vector indices. The spins ~(R) are defined similarly on a hypercubical 
lattice of double the lattice constant in (44) i.e., 

n = 2(N1, N2 .... , Na) (45a) 

for integral NI, N2,.... Figure 1 illustrates this configuration for two dimen- 
sions. 

To further describe the problem, we mentally divide the lattice into 
hypercubes centered at the ordinary lattice points R = (nl, n2,..., na), for all 
integral values of nl, n2,.... Each of these hypercubes contains z = 2 a 
vertices ~(r), and each ~(r) lies in z hypercubes. Two kinds of hypercube will 
be particularly distinguished in this work: 

1. The "b lue"  hypercubes centered at 

Rb = 2(N1, N2,..., Na) + (1, 1, 1 .... ,1) (45b) 

2. The " r e d "  hypercubes centered at the points (45a). Each spin lies in 
one and only one red hypercube and also only one blue hypercube. When r 
lies in a particular red hypercube R, we write r ~ R; and when it lies in the 
blue hypercube, we write r ~/~. 

We can now express a very general renormalization scheme by writing 
T(t~, e) as 

~(~, a) = ~, a(l~(R)) + ~, ~ bOx(R), e(r)) = ~ ~(t~(R), e) (46) 
R R r~R R 

where a and b are arbitrary real-valued functions. Then, the subtraction 
function U~(a), as defined by Eq. (6), is expressible in terms of functions 
u(~n), where ~n is the set of z variables a(r) with r ~ R. This expression is 

U:~(a) = ~ U(el0 (47a) 
R 

with 

Once these definitions are given, the exact renormalization transformation is 

exp[ -  H'(/0] = ; dF0 exp[ -  H(a)] 

x exp{~{a ( t~ (R) ) -u (a , )+~Rb( t~ (R) , e ( r ) ) ] }  

08) 
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�9 Ri R~ 
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R~ 
• 

/ 
R b R b 

�9 �9 �9 �9 

R 2 R 4 R 6 
x x x Fig, 2. Rz, R2, R3, R~ satisfy R~ ~ Rb; Ra, R4, Rs, 

�9 �9 �9 �9 �9 �9 R6 satisfy R~ ~ R~'. 

while the lower bound approximation takes the form 

exp[--HL(t~)] = f dro {exp[-H(a)  - I?(/~, ~)]} e x p [ ~  t(~(R), a ) - / z (aR)]  

(49) 

In order that Eq. (49) define a lower bound approximation, we must choose 
12to obey Eq. (18b). 

But before we define such a l?(t~, ~), let us choose a specific simple form 
of H((r). Let R' represent the centers of all hypercubes--red, blue, and the 
remainder (which we call green hypercubes). Let ~R, be the set of all spins 
~(r) with r ~ R'. Then take H(~) in the form 

H(a) = - ~ v(cra,) (50a) 
R '  

Write the integration as an integral over the variables in the different blue 
hypercubes 

Next, define R e R0 whenever the red hypersphere centered at R touches the 
blue one centered at R~. This touching is shown in Fig. 2. Finally, note that 
each R ~ Rb uniquely defines a single point which satisfies both r ~ R and 
r ~ R0 (see Fig. 3). We define this relationship by writing r ~ (R, Rb). With all 
these definitions, Eq. (49) may be written in the form 

exp[-- HL(~)] = f f ~ d~% exp[ + ~(,~R,,t~R,)]} exp[-- F'(m ,~) + V~(o)] 

(51) 

R, R 5 
�9 �9 �9 �9 o r "  �9 

R b R~ 
�9 �9 o1" qn �9 �9 

Rz R4 Re 
�9 , , , , , Fig. 3. r~(Rb, R~);r'~(R~',R~). 



Variational Approximations for Renormalization Group Transformations 183 

with 

and 

1 
V(aRb' /Z~b) = Z ~ a(/z(R)) + ~ 

R e R  b R ~ R  b r~Rb,.~ 

+ zvO,~,)  - u(,,Ro) 

b(~(r), , (R))  

(52a) 

= + z s 
R b R R" R b 

(52b) 

We are about to show that the Vo(a) defined by Eq. (52b) obeys all the 
conditions of (29). Once this demonstration is completed, we can simplify 
Eq. (50 by making the particular choice 

~(,, ~) = Vo(~) (53) 

Then (5D gives H L in terms of a product of integrals which are all independent 
of one another. Thus, (51) implies that 

HL(/z) = ~ V'(/ZRb ) (54) 
Rb 

That is, the new H has exactly the same form (50a) as the old H. Then our 
approximate recursion relation becomes 

exp[Y~Rb)] = f drab exp[z3(crrtb,/LRb)] (55) 

The proof that Vo0r) obeys (29) is very simple and direct. The symmetry 
operations Gj are composed of translations through two lattice constants 

r - + r  + (2, 0, 0,...) 

and rotation through 90 ~ about each cubic axis. All four terms in (52b) are 
symmetric under each Gj. Hence (29) follows immediately. Next note that the 
first two terms in (52b) are antisymmetric under the transformation red~-~ 
blue, i.e., 

r--~ r + (1, 1, 1,...) 

Hence, these terms obey all of Eq. (29). Finally, the last two terms in (52b) 
may be written as 

E ~ [v(aRb+r,) -- V(aBb)] (56) 
R~ R b 

Here r~ are all the z = 2 a different lattice vectors, 

r~ = ( n l ,  n2 . . . .  , na)  
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with each n taking on the values 0 and 1. Thus (56) is a sum of terms each 
antisymmetric under the transformation 

r - - ~  - - r  - -  r~  

plus the parity operation. QED 

2.2. Spec i f ica t ion  of  the  A p p r o x i m a t i o n  

Equation (55) may be simplified if we consider that the/x(R) for R ~ Rb 
are numbered in some manner t~(R) ~ t~ for i = 1, 2, 3 ..... z = 2 a. Corre- 
sponding to each/z, there is a single e,. Then, Eq. (55) reduces to 

exp[v'(tL)] = f de1 ... dew exp[~(~,/~)] (57) 

with (52a) implying 

1 
= + + - ( 5 8 )  

and (47b) implying 

Each ~ or ~ may be a composite variable with many internal indices. 
The "integrals" in (57) and (59) may be really only sums over a finite set of 
possible values. Eqs. (57)-(59) represent our basic approximation--the 
simplest general case of a lower bound recursion approximation. 

2.3. Case I : The  Ising M o d e l  

In this case each ~ and tx~ takes on two possible values, _+ 1. The most 
general form of a(t~) is P0t~, and the most general form of b(m ~) is pl(t~a), 
where po and Pl are two parameters which define the transformation. Equa- 
tion (59) then gives 

u(~) = u(sl) -- In 2 cosh[p0 + p~s~(~)] (60) 

with 

s~(a) = ~ e~ (61) 

Equation (57) then reduces to 

exp[v'(~)] = ~ exp ~ p o m l  + p l  . e ~ i  exp[zv(~) - u(sl)] (62) 
GI...G~ 



Variational Approximations for Renormalization Group Transformations 185 

with 
ml = ~ / z ,  (63) 

i 

In general v(o) may be expanded in terms of interaction constants. The 
first two terms are vo and vtsl, where st is the total magnetization in the 
hypercube. The next term is of the form 

Hence, the nearest-neighbor coupling may differ from the next-neighbor, etc. 
However, we may choose to deal with v(cr), which obeys the symmetry 
condition that it is symmetric under the interchange of  any two o's, e.g., 

v ( o l ,  o2 ,  o3 . . . . .  o3) = o l ,  

I f  v(6) obeys this permutation group symmetry, so will v'(~). Let us assume 
this symmetry. Then v(o) will be of the form v(sO and v'(~) will be v'(ml). 
Thus, Eq. (62) reduces to 

exp[v'(rn0] = ~ l ~ . . ~ e x p [ p ~ 1 7 6  +zv(s~)-u(s~) l  (64) 

The sum over the o's is most conveniently represented in terms of  the 
basic invariants of the permutation group s~(o). There are z + I of these 
functions of the z spins ~ .  They are defined by setting s~(o) equal to the sum 
of  all products of r different o's. Each of these is only a function of  the s~ 
defined by Eq. (61). More explicitly, we have 

so = 1 

sl = z, z - 2, z - 4,..., - z  (65) 

s.+l(sO = [sls.(sl) - (z - n + 1)s~_l]/(n + 1) 

They obey the orthonormality condition 

s.(s~)s,~(s~) = ~ w(sOs~(st)s=(s~) = 3,~j=(z)2 ~ (66) 
O" S 1 

where the weight is given by 

zl  
w(sO = [(z - s0/2] ! [(z + s0/2] ! (67) 

With the aid of these definitions, after some arithmetic, we can reduce 
Eq. (64) to the form 

= ~; s"(mt) (cosh p~)~(tanh pl)"( exp P~ ~ ) A~ (68a) exp[v'(ml)] ~,. s.(z) 

with 

A.  = ~, w(st)s.(st) exp[zv(s 0 - u(sl)] (68b) 
s l  

u(sO = In 2 cosh(po + plsl) (68e) 
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Thus, in d dimensions, a full recursion involves the calculation of z + 2 
summations, each involving z + 1 terms. 

2.4. Case I1: A General ized Gaussian Model  

A very similar analysis may be applied to a generalized Gaussian model 
in which each ~(r) is a vector with n components, written as n(r) or o~(r), 
i = 1, 2 , . ,  n. Following Bell and Wilson, (11) we choose 

1 
a(~(R)) = - ~  a ~/~s2(R) 

J (69) 
b(~(R), o(r)) = ab ~/~j(R)~j(r) 

J 

where a and b are adjustable parameters. Then, Eq. (47b) implies 

n In 27r + ab ~ U(art) = 2 a ~ ~ sj(R), sj(R) (70) 
J 

with sj the total spin on the hypercube 

ss(R ) = ~ ~j(r) (71) 
r ~ R  

We then choose H(~) in form (50a) and further specialize v(~R,) to be of 
the form 

V(~R,) = --(1/2Z) ~ %2(r) + V(s(R')) (72) 
r ~ R '  

J 

Thus, v involves an arbitrary function V of the total magnetization on the 
hypercube in addition to the trivial Gaussian term. The factor 1/z in Eq. (72) 
is designed to make the coefficient of ~i2(r) in H(a)  exactly 1/2. This choice 
essentially normalizes the Gaussian variables. Now, Eqs. (52) and (55) reduce 
to 

1 2 

1 2 = f {1-~j ~l~Rb d%(r)exp[--~% (r)]} 

[ 1 ab2s(Rb) "s(Rb)] x exp[zv(s(Rb)) -- -~ 

• exp -- a E E/z'2(Rb) -- 5In  
][~eR b J 

• exp[b ~ ~ ~ . s (R) .~/ r )}  (73) 
J ReRb reRb,R 
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Here m is the total cell magnetization, defined in exact analogy to Eq. (71), 

m(Rb) = ~ ~(R) (74) 
R ~ R  b 

Equation (73) involves z • n integrals. If  one fixes the n variables sy(Rb), 
the remaining (n - 1) x z integrals are essentially trivial Gaussian integrals. 
After they are performed, Eq. (73) reduces to 

expI  (m' ] 
= exp - ~ ~(Rb).~(Rb)[a - a2b2z] + -~ In 2~" 

R~R b 

1 2 
(2~-z)lJ~ (2~-z)~/~ 

, a 2 b  2 ) [ m . s  n 2 z r  1 ] 
x exp~--~-z  m.m exp ab -z ~ln  a s.s (75) 

Equation (74) will hold if and only if the two kinds of terms on the right-hand 
side, i.e., those in ~ .~  and those in re.m, match the two terms on the left. 
The equality of the ~. ~ terms implies 

1 = a - a2b2z (76) 

while the equality of the other terms gives 

a2b 2 n(z - 1) n l n l +  l n f  dsl ds~ 
v'(m) = - 2---Z m-m + ~ In 2~r - ~ a (2rrz) 1/2 (2zrz) 1/2 

[ 1 s ' s ( l + a b Z z )  + a b  ] • exp zv(s) - ~ z m.s (77) 

It is convenient to rewrite (78) and (79) in terms of the adjustable param- 
eter 

so that (76) becomes 

and (77) reads 

with 

q2 
v'(m) = - ' ~  

p = ab2z (78) 

l / a =  1 - p  (79) 

_ n l n ( 1  - p )  m.m + n(z; I )  In 2rr 

dsj [ . . l s . s ( 1  qm.s] + lnf ~ ~ exp[zv~s, - +P) + z--~-] 

q = ab/z = [p/(1 - p)]l12/z 

(80) 

(81) 



188 Leo P. Kadanoff, Anthony Houghton, and Mehrnet C. Yalabik 

3. GENERALIZED G A U S S I A N  M O D E L  

In  this section we discuss two special cases in which the recursion relation 
(80) can be solved analytically. We also discuss the results o f  a numerical  
solution of  the one-dimensional  integral Eq. (80). 

3.1. The Gaussian Model  v(s)  = Vo + v2(s 2) 

In this case the integral can be carried out exactly and we find 

vo' = zvo + �89 - 1 ) l n 2 ~  - ln(1 - p )  - ln(p + 1 - K2)] 

and  

Here  

and  

K~' = [p/(1 - p ) ] (M - 1) 

M -1 = (1 - K2 + p )  

(82) 

(83) 

(84) 

bz  = [zp(1 -p)]1/21:0=1.2 = 2 

= 0 (92) 

Equat ions  (89) and (92) are of  course the expected values of  the eigenvalues 
for  the Gauss ian  model.  

(90) 

(91) 

we see tha t  

As 

K2 = 2z%2 (85) 

At  the fixed point  

K2' = K2 - K2* (86) 

Equat ions  (83) and (84) are solved to give 

Ks* = 1 (87) 

I t  is easy to see that  Eq. (82) is extremal  at p = �89 which is indeed a m in imum 

of  v0. 
The tempera ture  eigenvalue is found by linearizing abou t  the fixed point  

OKz = M 2  ltz = 4 (88) 

In  the usual nota t ion  (~ we have then 

2 u, = 4 ~ y , =  2 = ~ v = � 8 9  (89) 

The  magnet ic  eigenvalue is obta ined by noticing that  

b z  = 2 (a-2 +~12 
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3.2. The W i l s o n - F i s h e r  M o d e l ,  E Expans io#  ~2~ 

In this case the generalized potential has the form 

v(s) = vo + v2s 2 + v4s ~ + v6s 6 + ... (93) 

s 2" = (s2)" (94) 

and Eq. (80) becomes 

_ _  n ( z -  1) n 1 p re .m+ l n 2 ~ + ~ l n ( 1 - p ) + l n I  (95) v'(ra) - 2z 2 I - p 

where 

I n / =  ln f. ~ d s *  e x p [ _ M _ ~ s  2 

we have chosen 

m~sl + z3v~s4 + z%6s 6 + ...] 
+ q  z (96) 

A 

m = (ml, 0, 0, 0,...) (97) 

and performed a simple change of variable s~' = s/~/z. As we will see, in 
4 - E dimensions, v4 ~ ~, v6 ~ ~2 ..... Anticipating this, we expand Eq. (96) 
in powers, of E, keeping consistently all terms to a given order in c. We find 

(K4zS) ~ 
In I = In Io + K4z3<s~> + K6z~<sO> + ~ (<s 8) - (s~) 2) +-. .  (98) 

here 

( S 2 ~ ) = I f  ~ ~ = ~ f d s l  ~ d s ~  s2~ exp[ -TM-~ (ks1 - q -M-~) 2] 

•  dsl ]---[ ( dsi 
~ 2 ] J  / ~ J  ~ ~={ J (2~r~ 72 

9 - 1  
x e x p [ - - - - T ( s l  - q -M-~------!~)2] exp ( M - ~ - -  s,2'~-1] / (99) 

Some useful averages are 

(s~) = qMml/z (100) 

<s12> - (s~> 2 = <s22> . . . . .  M (lOla) 

(sl ~) = (s~) ~ + 6M(s~ 2) + 3M 2 (lOlb) 

(s2 ~) = 3M 2 (lOlc) 
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Notice also that 

(s ~) = (sl ~ + 2(n - 1)s12s22 + (n - 1)s2 ~ + (n - 1)(n - 2)s22s32) (102) 

Carrying out the integral and using the averages defined above, we find the 
recursion relation 

Vo' = �89 - 1) In 2~r + ln(1 - p)] + ZVo + �89 In M + v~z3M2n(n + 2) 
(103a) 

K2' = p(1 - p ) ( M  - 1) + 4(n + 2)v,z3(Mq)2Mz2 + ... (103b) 

v4' = v4P(Mq)  ~ + ~ (Mq)~M28(5n + 6) 

+ (3n + 12)(vsz~)(Mq)~M + ... (103c) 

v6' = v6z~(Mq) 6 + 16 (Mq)6M + ... (103d) 

It is now straightforward to obtain the fixed point to order E. First from 
Eq. (103d) 

v6* = ~;(v~*z)2Mz (104) 

demonstrating that v6* ~ P. Substituting Eq. (104) into (103c) and keeping 
only terms of first order in ~, we find 

[1 - z3(Mq) ~] = v~*z~[Tn + 24] (105) 

I f  we recall that to leading order (Mq)  4 = _1_, it is easy to see that the left-hand 
side of the equation is at least of  order E. Explicit calculation shows that 

In 2 + 8(3/s + [Tn + 24]z4v4 * = 0 (106) 

where 3/(2* is the change in/(2* from its Gaussian value. The reader will 
notice that there is also in principle a contribution to Eq. (106) from the 
change in the variational parameter p;  this effect is, however, identically zero 
to leading order in ~. From Eqs. (103a)-(103d) again keeping only the leading 
order terms, we find 

3K2" + ](n + 2)v~*z ~ = 0 

Introducing 

we have 

and 

K4* = z3v4*2(n + 2) 

7n + 24 
In 2 + 8(8K2") + 2(n + 2)K~*z -= 0 

~K2* + ]K4*z = 0 

(107) 

(108) 

(109) 

(110) 
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Hence at the fixed point 

and 

6 n + 2  
K4*z = - ~ In 2 ~ n +----8 (111) 

3K2" = e l n 2  2n-- + 2  (112) 
5 n + 8  

As before we can find the temperature eigenvalue by varying Eqs. 
(103a)-(103d) around the fixed point 

3K2' = [4(1 + 4 3/(2*) + 6zK4*] 3K2 + z 3/s 

= [4 + (2/3)zK~*] 3K2 + z 3K4 
and 

aK,' = 8K,* aK~ + aK,[1 + O(~)] 

(113) 

(114) 

In principle there is a contribution to ~K2' from the change in the variational 
parameter; however, once again this effect does not contribute at leading 
order in E. The temperature eigenvalue is found from Eqs. (113) and (114) to be 

1 l n + 2  
v = ~ + ~ n  +-----~ ~ (115) 

in agreement with the calculations of Wilson and Fisher. (z2~ 
In order to obtain the magnetic eigenvalue, we must find the leading 

correction to b = [zp(1 -p)]1/2, that is, we must find the leading order 
correction to the variational parameter p. The lowest left-hand eigenstate of 

the derivative matrix b A is 

v ~ = (1, n/12,...) (116) 

Differentiating Eqs. (116) with respect to the parameter p, we find that the 
derivative of the transformation is, to lowest order in e, 

Hence the variational condition, Eq. (43), becomes 

0 = v ~ 1 7 6  T -  a 

which determines I. Making use of Eq. (110), we find that the change in the 
parameter I is at least of order e 2, which in turn implies that the magnetic 
eigenvalue 

,/ = 0 (119) 

to order (E2). 
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Fig. 4. The  critical index v as obta ined f rom Eq. (80). 

We see then that the approximation employed above is in fact an 
= 0 approximation, although in coordinate space, it is similar in spirit to 
Wilson's (13) original work. 

3.3. "' Exact"  Calculat ions 

Finally we note that the recursion relation for the one-hypercube 
approximation to the Wilson-Fisher model is easily solved numerically. 
Equation (80) is simply a one-dimensional integral equation. It  is solved for 
the fixed point v*; then the parameter  is adjusted as explained above. This 
adjustment gives the critical index 3 or ~/. Unfortunately, it always gives 

< 0. The error is not too bad since ~ = - 6 • 10-4 at z = 8. Linearization 
of the equation about  the fixed point gives the temperature eigenvalue from 
which the critical index v can be obtained. In Fig. 4 we plot v as a function of 
z = 2 a. The value of v obtained for d = 3 is 0.6502, compared to the high- 
temperature series value of 0.642. (1~) The eigenvalue grows unphysically 
large for z < 5. 

4. IS ING M O D E L  S O L U T I O N  

Now, we return to Eqs. (68a)-(68c), which give the one-hypercube 
approximation for the Ising model. Once the sT are calculated via Eq. (65), 
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Eqs. (68a)-(68c) give each iteration as a simple summation. The potential 
may be represented by writing 

v(sz) = ~,  K,s,(sz) (120) 
i 

Note that in this representation, the Hamiltonian contains a constant term 
- K o z N  and a dimensionless magnetic field equal to zKz. The standard 
nearest-neighbor and next-nearest-neighbor coupling constants are given by 

K=n = �89 Knn= = �88 (121) 

To maintain the symmetry between spin up and spin down, we choose P0 = 0. 
Since p~ is the only remaining variational parameter, we simplify the notation 
by writing px = p. 

Thus, we can express Eqs. (68a)-(68c) in the form of recursion relations 

K'  = RL(p, K) (122) 

4.1. Fixed Points and Critical Indices 

In two, three, and four dimensions there exists a range o f p  for which 
Eqs. (68a)-(68c) have at least three fixed points: 

(a) A "strong coupling," stable fixed point with relatively large v2. 
(b) An unstable, "critical" fixed point with smaller v2. 
(c) A "weak coupling," stable fixed point with even smaller oz. 

We identify the critical point with the second type of fixed point. 
The calculation proceeds by finding this fixed point for a particular value 

of p, i.e., finding Kz*(p), which obeys 

K~*(p) = RLfp, K~*(p)) (123) 

Then, b~j(r) is calculated as in Eq. (36), W~(p) as in Eq. (37), and voL(p) as in 
Eq. (38). Here the subscript 0 refers to the trivial eigenstate with eigenvalue 
z = U. Then the value o f p  is adjusted so that the extremum condition (43) 
is satisfied. This "bes t"  value o fp  is described as p*. This value o fp  and the 
corresponding nonzero coupling constants K~*(p*) are listed in Table I. 

Next, the eigenvalues of b~j are computed. Note that these computations 
of eigenvalues essentially describe situations in which p is held fixed during all 
recursions. That is, p is taken to be independent of the coupling constants. 
We shall see below that this is not a fully satisfactory approach. Table II lists 
the critical indices obtained from the two largest nontrivial eigenvalues. The 
eigenvalues are expressed in terms of the standard critical indices 3 and ~ by 
writing 

d/(2 - ~) = In~ b', d/(1 + 1/3) = ln~ b' (124) 



194 Leo P. Kadanoff,  Anthony Houghton, and Mehmet  C. Yalabik 

Table I. Fixed Points for the One-Hypercube Approximation 

Dimensional i ty  d 2 3 4 

Parameter  value p* 0.76598 0.40343 0.24992 

Coupl ing constants  Vo -0 .88720  -0 .73696  -0 .70774  
v2 0.13972 0.02097 4.0968 x 10 -3 
v~ -0 .006865 1.96 x 10 -~ 3.23 x 10 -5 
v~ - -  --7.69 x 10 - s  - 8 . 8 7  x 10 -7 

v8 - -  2.15 x 10 -5 - 2 . 5 1  x 10 -9 
vlo - -  - -  4.02 x 10 -9 
v12 - -  - -  - 3 . 9 1  x 10 - I~  
v14 - -  - -  - 5 . 3 2  x 10 -11 
v16 - -  - -  3.05 x 10 -11 

Table II. Critical Indices as Derived from the One- 
Hypercube Approximation a 

Dimensional i ty  d 

Critical index 2 3 4 

15.040 4.818 2.90 
(15) (5.0 + 0.2) (3) 

0.0017 0.1132 0.035 

(0) (0.08 + 0.04) (0) 
~, 1.7491 1.238 0.958 

(1.75) (1.250 + 0.005) (1.0) 
/3 0.12457 0.3243 0.5033 

(0.125) (0.3125 + 0.005) (0.5) 
~/ 0.24937 0.0313 0.050 

(0.25) (0.04 + 0.03) (0) 
v 0.9991 0.6289 0.491 

(1) (0.639) (0.5) 

a F o r  compar ison,  we list in parentheses values derived f rom other  
methods.  For  d = 2 a n d  d = 4, the compar i son  values are exact; 
for  d = 3 the compar i son  values are obtained f rom series expan- 
sions. In  the latter case, the compar i son  values shown and par- 
ticularly the errors  indicated are all based to some extent upon  the 
judgement  of  the authors .  The index values other  than  3 and 
shown as the result of  our  calculations are derived f rom scaling 
relations. 
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respectively for the first nontrivial even and odd spin eigenstates. The agree- 
ment with the exact results is surprisingly good at d = 2 and even reasonably 
good at d = 4. At d = 3, it is not clear whether the results listed are an 
improvement or a regression from the standard results of  series calculations. 

4.2. Free Energy Calculations 

In the remainder of this section, we use the one-square approximation to 
calculate thermodynamic functions for the two-dimensional Ising model so 
that these may be compared with the Onsager solution. ~ This calculation 
involves three different types of recursions. 

1. In a zeroth step of calculation, we perform a "decimation," i.e., a 
recursion ~6) which is a sum over every other spin in the lattice, holding the 
remaining spins fixed. This recursion can be calculated exactly if the original 
Hamiltonian contains only a magnetic field h and a nearest-neighbor coupling 
Knn. The result of this calculation is a potential on each new square of the 
form 

vl(sl) = h s l / 4 +  In 2 cosh(h + Knnsl) (125) 

I f  the original lattice constant is 1, the new lattice constant is 

al = a/2 (126) 

2. Then, starting from the Hamiltonian defined by vX(sl), the lower 
bound recursion is applied N I  times, with variational parameters p~, Pz ..... 
P ...... PNz. This calculation generates successively potential functions 
v2(sl),..., v~(sl) ..... v 1 +re(s1). After this is all done, the lattice constant is 

am+l = ~/2 x 2 m (127) 

3. Finally, v l+m is used to generate an explicit expression for the free 
energy via a formula which permits the calculation of a rough lower bound to 
the free energy. To get this lower bound, the entropy is given its maximum 
possible value. I f  there are ~ sites on the lattice, this upper bound to the 
entropy is 

S / K  = _~ln 2 (128) 

Moreover, the energy is given its minimum possible value, obtained by writing 

v(s ) -- X l ls,(z) (129) -F 

4 Thermodynamic functions for the two-dimensional Ising model have since been 
calculated by Nienhuis and Nauenberg. c16) 
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In  total this lower bound  to the free energy is given by 

~ [ l n 2  + ,>o ~ [K, ls~(z)+ K0] (130) ~ g ~ 

since there is one square for each site in the lattice. In  summary,  if we have a 
Hamil tonian  o f  the form (120), the free energy per s i tef (K)  is bounded  by 

- f ( K )  ~< -foZ(K) = In 2 + ~ [K, la,(z) + Ko (131) 
t > 0  

I f  the iterations successively generate interactions K 1, K2,..., K ~, .... K m + 1, 
then Eq. (131) successively generates bounds  on the free energy per site o f  the 
original problem, f(Knn, h), which are 

- f (Knn,  h) <. -(1/a~Z)foZ(K ~) - (l/a,2)foL(K ") (132) 

or 

t ] f ( K ~ , h )  >1 - ( 1 / 2  x 4 0 l n 2  + Ko ~ + ~,  IK~ls~(z) = f~L(K~,h) 

(133) 
Equat ion  (133) gives bounds  for  ~ = 1, 2,..., NI  + 1. 

Table I I I  gives an example o f  such a calculation of  lower bounds  to the 
free energy. The values of  the p ' s  in the successive iterations are listed in the 

Table III. Outl ine of a Free Energy Calculation r 

Coupling constants Bound on free 
Iteration Parameter before iteration energy from Eq. 
number value (130) 

a p v~ v4 f=L 

0 0.766 0.118 -0.027 -0.94487 
1 0.766 0.088 p.000 -0.89581 
2 0.766 0.027 0.024 -0.89035 
3 0.766 -0.073 0.039 --0.89391 
4 0.766 -0.139 0.062 --0.89572 
5 0.766 --0.158 0.080 -0.89624 
6 0.766 --0.163 0.085 --0.89638 

0.766 -0.165 0.086 --0.89642 

The starting point is a Hamiltonian with only nearest-neighbor interactions and 
Knn = 0.4. An initial decimation [see Eq. (125)] produces the couplings shown in the 
first row. Successive iterations using a parameter value of 0.766 give the couplings shown 
in the succeeding rows. The last column of the table shows the free energy bounds 
calculated via Eq. (130) after a steps of iteration. 
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Table IV. Free Energy Calculated with Adjustable Parameters = 

Coupling constants Bound on free 
Iteration Parameter before iteration energy from 
number value Eq. (130) 

,~ p v2 v~ f L 

0 0.656 0.118 -0 .027  -0.94487 
1 0.557 0.094 -0 .010  -0.89437 
2 0.408 0.060 -0 .002  -0.88493 
3 0.221 0.022 - 8 . 7  x 10 -5 -0.88396 
4 0.067 0.002 - 7 . 7  x 10 -8 -0.88393 
5 0.033 2.07 x 10 -5 1.4 x 10 -9 -0.88393 

0 0 0 -0.88343 

a The same as Table III except that the parameters have been adjusted to give the 
maximum possible bound on the free energy. 

table .  A t  this  m o m e n t  cons ide r  t h e m  to  be  f ree  pa rame te r s .  T h e  s t a r t ing  

H a m i l t o n i a n  was  t a k e n  to  h a v e  Knn = 0.4 and  ze ro  m a g n e t i c  field. ( N o t e  t h a t  

the  cr i t ical  va lue  o f  Knn is 10~o h ighe r  t h a n  this,  i.e., 0.44.) A f t e r  a few 

i te ra t ions ,  the  K~ a p p r o a c h  a s table  f ixed po in t ,  w h i c h  represen t s  t he  w e a k  

c o u p l i n g  f ixed po in t ,  a n d  t h e n  the  l ower  b o u n d  to  t he  exac t  f ree  e n e r g y  set t les  

d o w n  to  a va lue  close to  - 0 . 8 9 6 4 2 .  H o w e v e r ,  T a b l e  I I I  does  n o t  r e p r e s e n t  

the  o p t i m a l  ca l cu l a t i on  o f  the  free energy.  I t  is poss ib le  to  c h o o s e  p~ tha t  

Table V, Optimal Free Energy Calculation for Knn > Kc a 

Iteration Parameter Coupling constants Bound on 
number value free energy 

p v2 v4 f L 

0 0.871 0.165 -0.051 -1.11079 
1 0.967 0.181 -0 .036  - 1.04819 
2 1.179 0.216 - 0.029 - 1.03219 
3 1.610 0.287 --0.014 -- 1.02814 
4 2.252 0.401 0.107 - 1.02712 
5 2.465 0.561 0.451 -1.02687 
6 2.466 1.034 -0 .638 -1.02680 
7 2.437 1.146 -0 .973 -1.02679 
8 2.604 1.132 -0 .958 -1.02678 

oo . . . .  1.02678 

To construct this table, one starts from a Knn = 0.5. The free energy is then calculated 
witb optimized parameters as shown here. 
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produce a greater lower bound. These optimal p ' s  may be discovered by a 
numerical search procedure. The result of this optimal lower bound calcula- 
tion is shown in Table IV. Notice that for large ~ both the couplings (K~ ~, for 
i > 0) and the parameters p ,  go to zero. The net result is that after many 
iterations for T < T c a  weak coupling (K* = 0) fixed point is approached. 
The lower bound to the free energy per site is -0.88393. The exact result is 
-0.87936, so that there is an error of 0.5%. 

A corresponding calculation for Knn = 0.5 with adjusted p values is 
shown in Table V. The lower bound to f derived from this calculation, 
-1.0628,  agrees well with the exact result, -1.0258.  In Table V, it is also 
interesting to notice that, for large ~, p ,  and K ~ grow toward a strong coupling 
fixed point with p ~ oo and K2 --+ or. The appearance of different stable 

4% I 

0% 

-4% 

x - - x  FREE ENERGY 

: : 8 f / a K n n  

~x\ 

[ l 1 [ J p -  

0.0 0.2 0.4 0.6 0.8 1.0 

Knn 

Fig. 5. Percentage errors in the calculation of  free energy and af/aKnn. The greatest 
lower bound is compared with the Onsager solution. The points mark the data; the 
curves are only drawn as aids for the eye. 
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strong coupling and weak coupling fixed points accounts for the appearance 
of  a spontaneous magnetization when Knn lies above some critical value. 

Calculations like those shown in Tables III-V enable us to find a function 
fL(Knn, h) that gives the best lower bound tof(K,  h) that can be found within 
our calculational scheme. This lower-bound free energy has a singularity at 
Kn~ = 0.456, in comparison with the exact critical value 0.4407. Figure 5 
plots the ratio of  the approximate free energy function to the exact one and 
the ratio of their derivatives with respect to K ~ .  (The latter is twice the 
nearest-neighbor spin correlation function.) The maximum error in the former 
is 0.5% ; the error in the latter has a maximum of 4.57o--which appears to be 
largely a result in the error in To. Figure 6 shows a somewhat more sensitive 
test of the accuracy of our approximation: a plot of - 82F/SKin versus K~n. 
This quantity differs from the specific heat by a factor of K~.. Our results do 
indeed reproduce the specific heat curve reasonably well. 
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Fig. 6. Calculated O2F/aK 2 compared with the Onsager solutionl The dots represent our 
calculation. The crosses represent a calculation in which the second derivatives are 
calculated at fixed values of the parameters (see Section 4.3). 
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Fig. 7. Values of M 8 from the present paper compared with Yang's exact results. 

Figure 7 shows a plot of  the spontaneous magnetization 

~f(Knn, h) I 
M = Oh n-~o+ 

versus K. I t  is presented as a plot of M e versus K because both the approximate 
and the exact solution fit M - ~  (To - T) 1/~ very well in the critical region. 
Note that the error in the approximate solution can once again be ascribed 
mostly to an error in To. 

Table VI shows the derived values of 

X = - [82F(K,~n, h)/Sh2]h = o (134) 

listed as a function of Kn~. Since X should be of the form 

-iK.n - K ~ / c  for K= > Ko 
= ( 1 3 5 )  

C+ ~-o ~ for K ~ n < K ~  
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Table VI, Values of X and X r e a  = 

K~n X Xrea 

0 1.0 1.0 
0.1 1.57 1.017 
0.2 3.00 1.089 
0.3 6.87 1.064 
0.35 13.60 1.078 
0.4 41.94 1.118 
0.44 354.69 1.193 
0.48 7.08 0.0357 
0.50 2.18 0.0339 
0.6 0.13 0.0173 
0.7 0.03 0.0106 
0.8 0.01 0.0074 
0.9 0.003 0.0037 
1.0 0.001 0.0025 

a Here ~ea is calculated from the ap- 
proximate critical coupling Ko = 
0.45768. 

in the cri t ical  region,  we also list the values o f  

Kc 1175 
Xre.  = X I Kn~ - -  Kc  

F r o m  these values,  we es t imate  

C___~+ ~ 33 
C~ 

which compares  well with the series value (~5) 

C+ 
C _  ~ 3 7  

(136) 

4.3. An Internal  Cont rad ic t ion  

The reader  has p r o b a b l y  no ted  tha t  our  calculat ions  have one very 
serious internal  cont radic t ion .  In  Sect ion 4.1, where we calcula ted cri t ical  
indices, we k e p t p  fixed at  the cri t ical  value p*. In  Sect ion 4.2, we var ied  p as 
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the coupling constant departed from the fixed point value. As we saw in our 
comparison of Tables I I I  and IV, the adjustment o f p  from its critical value to 
optimal values corresponding to the actual couplings present produces a 
smal l - -but  detectable-- improvement  in free energy values. This kind of 
adjustment produces relatively small changes in ~f/OKn~ near the critical 
point. However, ~2f/aK2n is much more sensitive to an adjustment of the p 's  
to the optimal values. To see this, consider Fig. 6. In this figure the x 's  
reflect a second derivative of  f with respect to Kn, computed at fixed p values. 
The values are those that are optimal for the calculation o f f  The correct 
calcuration is indicated by the dots. In this case, the p 's  are allowed to vary 
with the change in coupling. The figure shows that  the correct adjustment of  
the p 's  is required to give a good fit to the specific heat. 

Thus, one can see the following contradiction: 
A change of the p 's  with a change in K 's  is required to give a good 

specific heat value, but eigenvalues calculated at fixed p are very accurate. 
Furthermore, we have found no natural way of computing reasonable values 
of  Op/OK when K is very close to the critical values. 

We do not understand this contradiction. For  this reason, we do not 
understand why the eigenvalues we have calculated are so accurate. Further 
work will be required to understand this difficulty and to appreciate the 
reason for the accuracy of the eigenvalue calculations reported here. 
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